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ABSTRACT: A general discussion of the magnetic shielding strength of
thin walled (dc<<) superconducting shells of arbitrary shape in
arbitrary magnetic fields is given. It is shown that the ratio
of the self-inductance of the shell and the kinetic mass of the
induced supercurrents, (L/m), represents a sufficiently accurate
estimate of the shielding strength of the shell. The ratio (L/m)
turns out to be an approximately known function of only one essential
length parameter which can be determined at a glance for any magnetic
screening problem encountered in practice.
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INTRODUCT ION

It is well known that the internal magnetic field of a bulk
superconductor in an external field, Ho, decreases exponentially
toward the interior of the specimen. The same field penetration law
predicts that the field inside a thick walled superconducting shell,
Hi, is likewise exponentially attenuated; Hi/Ho : e-d/x<<1 . If, on
the other hand, this law is applied to a thin walled shell with
d<<), it predicts Hi , Ho, i.e. it predicts that field attenuation
is extremely weak.

We wish to point out that in the case of a thin walled super-
conducting shell with d<<X, contrary to the conclusion just reached
on the basis of the bulk penetration law, the internal field is
strongly attenuated. It will be shown that an attenuation factor
of the order of 104(a Ho/Hi) is easily attainable with a thin walled
shell of mean diameter il cm, even if the shell consists only of
a thin film of order 100 A thick; even if the thickness of the shell
is much smaller than the penetration depth, x. Further, the atten-
uation factor for a double shell is found to be a rapidly increasing
function of the ratio of the mean shell radii. It will be shown by
way of example that for the special configuration of concentric
spherical shells, the attenuation factor approaches (RI/R) x the
square of the single shell attenuation factor as [1 - (RI/R) 31- 1,
where R' and R are the mean shell radii of the inner and outer shells
respectively. In general, the n-shell factor is

R.
n I n

9i. ( )a

as the function

"Ri,1
where (_-) is the ratio of concentric mean shell radii (R .<R )

R.l
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A rigorous derivation of the attenuation law for arbitrarily
shaped shells is too ambitious. Part of the discussion is therefore
confined to the perfectly spherical shell. Certain physical ideas
presented at the end will, however, suggest that the results obtained
for the spherical shell are indeed quite qeneral. We will argue that
for shells of arbitrary shapes in arbitrary fields, the quantity
a' = [l + (L/i} f- where L is the self-indu'ctance of the shell and
m is the kinetic mass of the induced suDercurrents, yields a
sufficiently accurate estimate of the attenuation. We show that

the magnitude of (L/m) is an approximately known function of only
one essential length parameter which can be determined at a glance
for any magnetic screening problem encountered in practice.

DISCUSSION OF MAGNETIC SHIELDING

The response of the shell system to an arbitrarily applied
field is governed by the following equations:1

2 0 2 Q2S0=KE0 + 0-1

-. 2.

where the order parameter f = 0 (x,y,z) e Q $IK - A,
-4
A is the vector potential, K = X/ý, X(T) = penetration depth, and

P(T) = coherence length. We consider the pure Meissner state; 0-

2 0=K 2 +A2

2- =2 V x Vx •,= -1'2•(2)

In order to obtain a solution of these equations, we concentrate on
the second one and assume as a first approximation that 0 ; constant
as 1. A discussion of this approximation may be found in the
literature. 2 It turns out that the assumption leads to results
which are in agreement with experiment up to applied fields of the
order of 0.5 gauss at temperatures T < T c/2 1 provided, as a rule,
that the curvature of the shell is fairly uniform. If the radius
of curvature of part of the shell is too small (of order X), as is
the case, for instance, for an extremely oblate spheroidal shell,
the critical field may be much less than 0.5 gauss. This will be the
case if the large dimension of such a shell is placed transverse to an
external field.

2
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With 0 = constant, the solution of equation (2) is straight-
forward and we merely state the results. The internal magnetic field
of a spherical doutle shell in an applied field, H., is.

2 .•= R(2) R 2R R n2(R) J(R)7 F j(R))n2(R)
LH2 (0) 2 4 23 22

C; 2 43
-23 r- ' 1- R o -(R )J (RI)- J ( 4 R4 (3)

-i2
where P = X_ R 1 to R 4 are concentric inner and outer radii of the

shells: RI > R2 > R3 > R4 .A [n23, e.g. stands for [n 2 jO - j 2 no0

and, e.g. j(R) • j[iORR]. The n's and the j's are spherical Bessel

functions.

For 09R. >> 1, all i's; and 3dj << 1, j = 1, 2.

r•- 9R R 4 R3/R) 3 ) 2

3Rd/ j R Rd 2 1

04 214 2 -R N 3 .R-

4 2 2 1 21\,T, -R 3
2 3

dl; d2 = thickness of the outer and inner shell respectively. This
is the desired result.

The attenuation factor is dominated by the function in the
curly brackets. For a single shell of thickness d this reduces to
3(0B) 2 Rd, which is of order 104 for ORR = 105 and 09d = 10-1. The
latter values of the parameters are easily attained in practice;
e.g. x = 10-5 cm, d = 10-6 cm, R = 1 cm, 0 ý1 . Further, as
(R3 /R 2 ) becomes < 1, the attenuation approaches

9V(i) 2 Rd1 x (ef) 2 Rld21-1 as [I- (R'/R) 371 1

where R' and R are the mean radii of the inner and outer shell
respectively. Since R' and R need not be very different to make
rl - (RiR) 3 1 , 1, the double shell attenuation factor may easily

be of order 108, even if each shell is extremely thin, i.e. d /-
d 2/1cz,-l.

3

d2/• •I.
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Next, a word about the general validity of this result for
arbitrarily shaped shells. First, two more oarticular examples:

For the infinite cylindrical shell in an axiAl magnetic field, H0,
one finds:

4

H.__ 2R -l
Sa = [I + (0Q) Rd

0

It is also easy to guess at the attenuation for a cylindrical shell
in a transverse field by comparing with the latter formula and the
formula for the single spherical shell which follows from eauation (3)

1 2 1-

I= I + -(0Q) 2Rdl-
3

it should be

2

where the factors, 1, 1/2, 1/3 are the respective demagnetization
factors.

In order to arrive at a general statement and at some ohysical
insight, we consider the following expression for a superconducting
shell of arbitrary shape, olaced in an arbitrary magnetic field:

Ic' J(r) " A(r) dl (r) da(r)
a --

J J(r) - Ao(r)dl (r)da(r)

J(r) is the current density, A°0 is the appliei vector potential, the

xntegral dl_
edl_(r) is taken along the current flow pattern in the wall

of the shell and the integral Fda(r) is taken perpendicular to dl'*(r)
c

over the current carrying cross section of the shell.

The two integrals in a' are proportional to familiar expressions
for the magnetic field energy. In this context, however, we view
each integral as a weighted average of the flux linking the super-
conducting shell, the weight function being the current density

4
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J(x,y~z). Both numerator and denominator in a' are similarly
affected by the weight J(xy,z). Further the spatial dependence of
J(x,y.z) is similar to the spatial dependence of the vector potentials.
J.,7ey,z) is, in fact, proportional to A(x,yz) (see equation ,4)
below). Hence one expects the ratio a' to be relatively insensitive
to J(x,y,z). The major variation of a' will come from the magnitude
of the fluxes themselves. a' is therefore a measure of the average
magnetic field attenuation.

c' may be transformed into a more suggestive form. Since

A(r) = A (r) + A R(r)

where A (r) is the response-vector potential, one may write:
R

*ffJ(r) - A(r)dLc(r)da(r) = iJ(r) A (r)dl (r)da(r)

+ ýIr J(r) A (r)dlc (r)da(r)
''c R

and hence:

+ -I',,PC.1,7c c a r a r r-r' dl r) dlc,(r')

7J(r) 12di,(r)
co 2 shell

lJ(r) dl (r)da(r)
- ~ I C

where we have used: AR( = c_ --
R(r) A jr= •c

4,,2
Anr J(r) (4)

CO02
Since f. • •O hi (r'

Since c' Ida(r)da(r ') Jr) -dl (r) ddl (r'),- r-r' 1  c c'

2 2 2 dM ml2I2 and 2d(r) shei

5
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where I = the total induced current in the shell, L = the self
inductance of the shell and m = the kinetic mass of the super-
current I:

(11

[l+(L/m)]

We therefore have the very general statement: The magnetic field
attenuation of a thin walled superconducting shell (d/x<-el) is large
if the ratio of the electromagnetic mass (=-L) to the kinetic ma•s m '

of the induced supercurrent is large.

The specific examples given above yield, after some lengthy
calculations of L and m, that the ratio (L/m) is, in fact, of order

(oq) 2 Rd. These explicit calculations, as well as the dependence of
a' on the simple macroscopic quantities L and m, suggest that q' is
indeed small, or equivalently that (L/m) is large, independently of
the exact form of J(x,y,z). This is, in fact, as expected from the
original definition of a'.

On the other hand, the overall macroscopic dimension of the
induced current distribution, which in turn determines the self-
inductance of the shell, is by no means unimportant. This overall
dimension of the current distributioo• is, in fact, the essential
variable in (L/m).

Consider again the shell in a uniform applied field. Here the
dimension of the current distribution is clearly defined by the
dimensions, or th? size of the shell itself. The response is there-
fore governed by R in (OP) Rd where R is a measure of the overall
size of the shell. On notes in this connection, for the special
examples cited above, that i becomes of order one as (0Q)R . 1;
field penetration becomes strong for dee) only in the limit of very
small shell dimensions. In general, field penetration is strong,
or a' , 1 when the magnetic inductance L 0 comparable to the kinetic
inductance m of the suoercurrent.

i' now the applied field is nonuniform over the volume of the
shell, then the incuced current distribution will be determined to
some extert by the distribution of tie external currents. As the
dimensions of the exterial current distribution became small with
respect to the size of the she]], the shell will begin to mirror
this distribution. If the external current distribution is olaced
in close proximity with the shell, the induced current distribution
takes on the overall dimensions of the external distribuition.

6
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Suppose that the overall size parameter of this distribution is
"a". The self-inductance of the shell is now determined by a -
current distribution "of size a". and the attenuation-J(0F) 2 Rd-
is replaced by an expression of the form r(0•) 2 f(a)d1 . "a" is
the new essential size parameter. f(a) is at least of order "a"
and one notes that magnetic field attenuation will remain strong,
regardless of the nonuniformity of the applied field as l3ng as

2[(OQ) ad] remains large: as long as the dimensions of the external
current distribution remain large compared to both d and 1. This

is always the case in practice.

We can illustrate these ideas by considering the response of a
spherical shell to a single current loop of unit strength. The
vector potential inside the shell is easily shown to be:

-4. 1 v-D (2n+l) (n-l) _R__n-1 R n 1

A =-i _n 2 -) P (cose

1 rn ' -i
P (cosq) [nn+l (iOPR2 )j n l(i 1qR 1

where (a,G ) are the position coordinates of the loop. Using the
fact that Nhe fiild at the center of the loop in the absence of the
shell is H = 4_•(2a) one obtains for the case of a loop conceitric
with the shelf:

H(R=0) with shell ,R 1 1
H(R=0) without shell + 2

2 3l -'(09) R 2d'

R
This is precisely the result for the uniform applied field 1 1>•.2

The radius of the loop, "a", does not appear in x, roughly speaking,
because the dIimensions of the source are larger than those of the
shell.

Now suppose that the loop is contracted toward some point over
the shell, or alternatively the shell is expanded until the loop
faces essentially a plane sheet of superconductor. Let the sheet
be perfectly plane (R2 = co). This problem has been treated in
detail elsewhere. 3 In cylindrical coordinates with the center of
coordinates at the center of the loop and the z-axis along the
axis of the loop, the axial magnetic field behind the film at

7
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[-(z o-d) > z 2 - z 1 is to a sufficient approximation:

2

H (r=O, z < - z 4-T1 1 r 3 x a -
z 0 c (09) 2 d 'a 2 +x 2 ,52j-

cosh 0ud. "
where x Iz i - d + 2(log 2) ( co) and "a" is the radius of
the loop.

In the absence of the shell, this field is:

2
H _2TT a2

zo C [a+2 2 3/2

and the attenuation factor becomes:

Hz 6 fxra22 23/2

H , (0) 2d t[a2+x2i5/2 ".

Since the term

72(log 2) rcosh(O0d) 41
00 J J

is of order X, we write x o z and have:

1

.- 6z "

which exhibits the explicit dependence of a on the diameter of the
source. The "size parameter" of the spherical shell, R, has been
replaced by the function

2 27
L a +Z

6z

which is a a/3. Hence amax 3 2
[(OR) ad8

8
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Here ,t is smaller than the attenuation factor experted from

at = Ir + L/mT-1. L introduces, at most, the familiar alog(8a/b)

term of the current loop, where "a" is the mean diameter and "b"
is the mean crosp section of the induced current distribution
m is propritional to "a". Hence L/m , log(a/b) and c' is a con-
servative estimate of the actual attenuation.

CONCLUS IONS
-l

The discussion has shown that a' = [I 4- (L/m)] is a useful
measure of the magnetic field attenuation for thin wailed super-
conducting shells. We have shown that it is not necessary in
practice to know the exact value of (L/m), which would necessitate
solving the attenuation problem in detail for every particular
situation, but that it is only necessary to observe the relative
size and position of shell and sources in order to be able to
determine the value of the length x in [(Rd) 2 x d] > (L/m), i.e., in
order to know the attenuation. From the results it foiliws that
the attenuation is strQng for x of the order of centimeters even
if d/x<<l. (H./H ) = a is of order 10-4 for single shells and can
easily be of order 10-8 for double shells.

Finally we suggest that it may be of considerable interest
from a technological point of view to know the shielding strength
of such shells. Superconducting magnetometers, for instance, must
be carefully screened from stray fields. This discussion shows that
a thin evaporated layer of superconducting material can be used
very effectively to provide magnetic shielding of circuit components
from external fields as well as from one another.

9
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